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Nonlinear bow flows with spray 
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The steady flow past the bow of a two-dimensional ship in water of infinite depth is 
considered. The ship is assumed to be a semi-infinite flat-bottomed body terminated by 
a face inclined at an angle /3 with the horizontal. The spray is modelled by a layer of 
water rising along the bow and falling back as a jet. A series truncation method is used 
to solve the fully nonlinear problem numerically. It is shown that for a prescribed value 
of /3, there is a one-parameter family of solutions. Values of the drag and of the jet 
thickness are presented for different values of p. 

1. Introduction 
The steady, inviscid, irrotational flow past the bow of a two-dimensional ship 

moving at a constant velocity at the surface of a fluid of infinite depth is considered. 
The ship is assumed to be a semi-infinite flat-bottomed body terminated by a face 
inclined at an angle p with the horizontal. 

Several configurations have been proposed for such flows. The simplest one is shown 
in figure 1 (a) : the free surface rises smoothly to a stagnation point on the bow. This 
flow was first proposed by Dagan & Tulin (1972), who constructed it for small Froude 
numbers by a perturbation expansion. It was later investigated by Vanden-Broeck & 
Tuck (1977), Vanden-Broeck, Schwartz & Tuck (1978) and Vanden-Broeck (1985). 
These authors found that waves are always present on the free surface (see figure 1 (b)). 
Therefore, their solutions are appropriate for stern flows but not for bow flows. Their 
results show that solutions without waves (like in figure 1 a) are not possible in water of 
infinite depth. However, such flows exist in water of finite depth (Vanden-Broeck 
1989). 

Another configuration, also first proposed by Dagan & Tulin (1972), includes a 
model of the spray as a jet rising along the bow and falling down onto the oncoming 
stream (see figure 2). The upper free surface emanates from a stagnation point on the 
bow, whose position is unknown a priori. The impact of the jet on the oncoming flow 
is neglected by assuming that the jet falls into another Riemann sheet. Dagan & Tulin 
used matched asymptotics to construct solutions with a high Froude number. A similar 
analysis was used by Wu (1967), Ting & Keller (1974) and others to study the planing 
of flat surfaces. Fernandez (1981) extended Dagan & Tulin's calculations to three- 
dimensional bows. A qualitative description of the bow flows of figure 2 can also be 
found in Tuck & Vanden-Broeck (1985). The flow of figure 2 is not the only possible 
model for a bow flow. Grosenbaugh & Yeung (1989) and Yeung (1991) have studied 
flows by using a time-dependent scheme. Tuck & Vanden-Broeck (1985) have 
suggested a model in which the bow wave is approximated by a region of high vorticity, 
lying above an essentially irrotational flow. 
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FIGURE 1. (a) Sketch of a bow flow with the free surface rising smoothly to a stagnation point on 
the bow. (b) Sketch of a bow flow with waves. 
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FIGURE 2. Sketch of a bow flow with spray. This is a computed solution for p = in and F, = 2.14. Five 
points have been selected on the boundaries. The dashed lines represent the dividing streamline 
II. = 0, which terminates on the bow, and the streamline @ = 1. 

X 

In this paper, we compute solutions for the flow shown in figure 2. We assume in our 
formulation that there is a jet rising along the bow to a stagnation point and falling 
down onto the oncoming stream. The validity of this assumption is demonstrated by 
providing accurate numerical solutions. The numerical scheme uses series truncation 
and is similar to the procedure used by Vanden-Broeck & Keller (1987), Dias, Keller 
& Vanden-Broeck (1988) and Dias & Tuck (1991) to investigate weir flows and 
waterfalls. Dias & Christodoulides (1991) and Dias & Tuck (1993) have adapted these 
schemes to compute spray-like flows in a corner, where the whole oncoming flow rises 
along the wall. They were able to model the loop that the sheet of water makes as it 
falls back onto the oncoming flow, and found that such flows exist only above a critical 
value of the Froude number. Vanden-Broeck (1993) computed a similar flow using 
finite differences. 
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FIGURE 3. As figure 2 but for Fd = 1.68. The dashed lines represent the dividing streamline @ = 0, 
which ends on the upper free surface, and the streamline 1+9 = 1. 

It is convenient to describe the flow in terms of the angle p between the bow and the 
horizontal, and of the two Froude numbers 

Fd = U/(gd)g, (1.1) 

and I$ = U/(gS)?, (1 4 
where U is the velocity of the ship, g the acceleration due to gravity, d the draught and 
6 the upstream thickness of the jet rising along the bow. Now that the ratio between 
the jet thickness and the draught is 

d=(gJ. 6 

As we shall see, there is a one-parameter family of solutions for each given value of p. 
The parameter can be chosen as the draught Froude number (1.1). Results will be 
presented for different values of /3. As Fd decreases, the stagnation point D at the end 
of the dividing streamline first rises along the bow and then moves along the upper free 
surface (see figure 3). When D is on the upper free surface, there are two stagnation 
points on the upper free surface and there is therefore a region in between where the 
fluid is almost stagnant. 

The problem is formulated in 92. Use is made of the hodograph variable. In 93  the 
problem is solved numerically by a series truncation method. In $4 the results are 
discussed and plots of various physical quantities are shown. In $5, an exact solution 
to the problem in the absence of gravity is given. 
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2. Formulation of the problem 
The steady irrotational flow of an incompressible inviscid fluid past the bow of a ship 

is considered (see figure 2). The ship is assumed to be semi-infinite. The bow makes an 
angle /3 with the horizontal. In a frame of reference moving with the ship, we study the 
problem of a uniform flow approaching the ship from the right with velocity - U. The 
water is supposed to be of infinite depth. We denote infinity upstream by I ,  the 
stagnation point along the bow by S, the stagnation point where the dividing 
streamline ends by D and the intersection between the bow and the bottom of the ship 
by C. We will first formulate the problem by assuming that the stagnation point D lies 
on the bow. It will be shown later that D can also lie on the upper free surface. The 
corresponding changes in the formulation will be described in the next section. As the 
flow approaches the bow, part of it rises along the bow and eventually comes to rest. 
It then becomes a jet which falls down to infinity (point J ) .  It is assumed here that the 
jet does not cross the oncoming flow. The problem is non-dimensionalized by taking 
U as the unit velocity and the upstream thickness 6 of the jet as the unit length. In 
dimensionless coordinates, Bernoulli's equation on the free surfaces takes the form 

if we choose the horizontal x-axis to be along the lower free surface at infinity. The 
vertical y-axis goes through the point S and 4 is the magnitude of the velocity. 

We denote the velocity potential by r$(x,y) and the stream function by @(x,y). In 
addition we introduce the complex variables z = x + iy and f = r$ + i@. The flow 
domain in thefplane is shown in figure 4(a). There is a slit starting at D. Because of 
the choice of dimensionless variables, the distance between the streamline IJ and the 
slit (i.e. the flux going into the jet) is 1. 

Following the method that was used successfully in other papers quoted in the 
introduction, the domain occupied by the fluid in thef-plane is mapped onto the upper 
half of the unit disk in an auxiliary t-plane so that the points S, I and J are mapped 
into the points - 1, 1 and i (see figure 4b). The bottom and the bow of the ship go onto 
the real diameter. The images of the points C and D are denoted by t ,  and t,. The 
transformation from thefplane to the t-plane can be written in differential form as 

The hodograph variable 
(2.3) 

def df 

is then introduced. The problem to be solved is to find { as a function of t which is 
analytic inside the upper half-unit disk and continuous on the boundaries. Moreover, 
Bernoulli's equation must be satisfied on the free surfaces and kinematic boundary 
conditions must be satisfied on the real diameter. Points on the free surfaces are 
represented by t = el". 

The complex function g is singular at the points S,  D, C and J .  At point S ( t  = - l), 
where the bow intersects the upper free surface, the velocity vanishes. The local 
behaviour of the flow near S has been studied by Dagan & Tulin (1972). Their analysis 
implies that the appropriate singularity is 

g - ( t+ 1)27/6 as t+- 1, 
where r = p  if in < / 3 < + n  and r = in if 0 < p < + n .  

= s(4 
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FIGURE 4. Flow domain in: (a) the plane of the complex potentialf, (b) the intermediate t-plane. This 
case corresponds to bow flows where the dividing streamline ends along the bow. The images of the 
five selected points of figure 2 are shown. 

The free surface is horizontal at S when ~ T C  < /3 < fn and forms an angle of ~ T C  with the 
bow when 0 < /3 < $. 

At point D, where the dividing streamline intersects the bow, the velocity vanishes 
and 

c- ( t - t , )  as t + t d .  
At the corner C between the bow and the bottom of the ship, the velocity is infinite. 
Since there is a corner with an angle /3, the appropriate singularity is 

5 - ( t  - t,)-Pix as t --f t,. 
At point J ( t  = i), there is a jet-type singularity. It can be shown (see Birkhoff & Carter 
1957 and Vanden-Broeck & Keller 1986 for details) that the behaviour of < is 

c-[ln(t2+1)1+ as t+i. 
Taking into account the above singularities, the hodograph variable is written as 

With such an expression, the velocity is automatically - 1 at infinity (i.e. at t = 1). In 
(2.4), c is an arbitrary constant smaller than 0.5. We checked that the final numerical 
results are independent of the value of c. In most of the calculations, we chose c = 0.2. 

The coefficients a, in (2.4) are to be found to satisfy (2.1) on the free surfaces. 

3. Numerical solution 
We solve the problem numerically by truncating the infinite series in (2.4) after a 

finite number of terms. As we shall see, there is, for each value of /3, a one-parameter 
family of solutions. It is convenient to choose this parameter as the image t, of the 
stagnation point D in the t-plane. For a given value of t,, I$ and t ,  are determined as 
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part of the solution. We truncate the infinite series in (2.4) after ( N -  2) terms, so that 
there are N unknowns: F,, t, and the ( N - 2 )  coefficients an. We introduce ( N -  1) mesh 
points on the free surfaces, +(N-  1) on each (assuming that N is odd). These points are 
defined by 

(3.1) 
n 

CT, = -(m-+), 
N -  1 

with 1 < m < f(N- 1) for the lower free surface and i ( N +  1) < m < ( N -  1) for the 
upper free surface. We want to satisfy (2.1) at each of the collocation points. Therefore, 
we need to evaluate the elevation y at the mesh points (3.1). This is done as follows. 
For points on the upper free surface, we use (2.3) to write 

x(a,)+iy(v,) = I-- . F,2 2 l m i $ d g .  

The integration starts at c = 7~ and proceeds with the trapezoidal 
the lower free surface, we obtain z as 

(3 4 

rule. For points on 

where v* is an arbitrary value of CT, between 0 and in. The value of z(a*) is obtained 
by integrating directly across the unit disk from t = - 1 to t* = eiu*: 

Bernoulli’s equation (2.1) can now be satisfied at the mesh points (3.1). This yields 
( N -  1) equations. The last equation is obtained by imposing 

so that the free surface is flat upstream, i.e. without waves. 
For given values of /3 and t,, the system of N nonlinear equations is solved by 

Newton’s method, using the package COSNBF from the NAG library. Once the system 
is solved, the coordinates of the points C and D are computed by integrating dz/df 
along the bow. Next, the jet thickness (1.3) and the draught Froude number (1.1) are 

( 3 4  
calculated as follows : 

S/d = - 1/u(C>, 
‘d = &/(-dC)?. (3 7) 

Finally, the drag d exerted on the bow is evaluated. It is equal to the horizontal 
component of the pressure force exerted on the bow. Using Bernoulli’s equation, one 
obtains the following expression for the drag coefficient: 

4. Discussion of the results 
We use the scheme described in 0 3 to compute solutions for various values of t, and 

p. Profiles of the free surfaces, the dividing streamline and the streamline @ = 1 are 
shown in figures 2, 3 and 5.  Table 1 shows the accuracy of the results as a function of 
N for /3 = +7c and t ,  = 0.7. Solutions were computed for values of t ,  between - 1 and 
+ 1 and for various values of /3 less than in. 
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N 4 t c  Y(C> Y(D) 4 
101 3.59 0.956 - 1.56 0.02 2.88 
161 3.59 0.956 - 1.57 0.02 2.86 
301 3.58 0.956 - 1.60 -0.01 2.83 
40 1 3.58 0.956 - 1.59 -0.01 2.84 

TABLE 1. Accuracy of computed quantities as a function of N .  The given value of t ,  is 0.7 
and /3 = in. The values of the coefficients are a, = 0.38, a,, - 0.005, a,,, - 0.0001. 

As t ,  approaches + I ,  both Froude numbers F, and I$ become very large. The 
vertical coordinate of y ( C )  approaches - 1, i.e. the draught and the upstream thickness 
of the jet become equal. The limiting configuration for t, = + 1 is the no-gravity solution 
described in $5 .  

The draught Froude number F, decreases as t, decreases. As t ,  approaches - 1, the 
stagnation point D moves closer to the stagnation point S, and the two stagnation 
points merge into one for t ,  = - 1. Even so, the program still converged for t, = - 1 ! 
(see figure 6). 

The family of solutions can be continued if D is allowed to lie on the upper free 
surface. The changes involved in the formulation are minor. The image of the point D 
in the t-plane now lies on the unit circle and can be expressed as t ,  = eiY, with y between 
;n and n. The correspondingf- and t-planes are shown in figure 7. The expression (2.2) 
for df/dt becomes ~ 

1 3, -___ 2 [(l+t2-2tcosy)(l+t) 
dt ncosy (l-t)3(l+t2) ' 

while the expression (2.4) for 6 becomes 

(4.1) 

00 )(") -pin [ In c( 1 + t 2 )  f [ l +  C a,(t"- l)]. (4.2) 
2(1-c0sy) 1-t, In 2c n-1 
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FIGURE 6. Computed solution with t, = - 1. The resulting values are t ,  = 0.587, I$ = 4.07, 
F, = 2.07. The dividing streamline @ = 0 is shown. 
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FIGURE 7. Flow domain in: (a) the plane of the complex potentialf, (b) the intermediate t-plane. This 
case corresponds to bow flows where the dividing streamline ends on the upper free surface. The 
images of the five selected points of figure 3 are shown. 

A computed solution for y = $TC is shown in figure 8. The free surface goes down very 
slightly between the two stagnation points S and D but it cannot be seen on the figure. 
Accurate solutions can be calculated for y greater than NN 0 . 6 ~ ~ .  For y smaller than 
NN 0 . 6 ~ ,  the convergence of the scheme as Nincreases becomes poor. The reason is that 
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FIGURE 8. Computed solution with y = 8x. The resulting values are t ,  = 0.548, I$ = 4.28, F, = 1.99. 
The dividing streamline @ = 0 and the streamline @ = 1 are shown. 
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FIGURE 9. Plot of 6/d versus 4 for a vertical bow and for /3 = in. The crosses indicate the transition 
for the location of the stagnation point D. For points on the left of the crosses, D is on the upper free 
surface. For points on the right of the crosses, D is on the bow. 

there are not enough mesh points between D and J.  Investigation of the solutions for 
y < 0 . 6 ~  is left for future work. 

Figure 9 shows a plot of S/d versus Fd for a vertical bow and for ,B = $71. As the 
draught Froude number decreases, the jet thickness decreases. As Fd + co, the limit 
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FIGURE 10. (a) Plot of the drag coefficient (see (3.8)) versus 6/d for a vertical bow and p = ;K; (b) plot 
of the drag coefficient defined as A / p V d .  The crosses indicate the transition for the location of the 
stagnation point D .  For points on the left of the crosses, D is on the upper free surface. For points 
on the right of the crosses, D is on the bow. 

is 6 /d=  1. A plot of the drag coefficient (3.8) versus the jet thickness for the 
same values of P is shown in figure lO(a). The drag coefficient approaches the value 
1 +cosP as the jet thickness approaches one. A plot of the drag coefficient defined as 
d / p V d  is shown in figure lO(b). 

5. Solution without gravity 
As t, approaches 1, the flow approaches the solution without gravity shown in figure 

11. The flow rises indefinitely along the bow without falling. There is only one free 
surface along which the magnitude of the velocity is equal to 1. In order to calculate 
this flow, thef-plane and the t-plane must be slightly modified as shown in figure 12. 
As was shown by Oertel(l975) and Dias & Elcrat (1992), there is an exact solution for 
L namely 

Since df 16 t 
dt 7c (l-t)3(l+t)7 
- --- 

There are two parameters in the problem: the angle P and t,. However, the number 
of parameters can be reduced to one if one requires the free surface to become 
horizontal upstream. This requirement is satisfied if the derivative d[/dt vanishes at 
t = 1. It is easy to show that it is the case if 

* - P  t, = - * + p .  (5.4) 
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FIGURE 11. Computed solution without gravity for a vertical wall. The dashed line 
is the dividing streamline. 
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FIGURE 12. Flow domain in: (a) the plane of the complex potentialf, (b) the intermediate t-plane. This 
case corresponds to flows without gravity. The images of the four selected points of figure 11 are 
shown. 
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The horizontal component of the pressure force d acting on the boundary CDJis easily 
found from a horizontal momentum balance. One finds 

A plot of the free surface and of the dividing streamline is shown in figure 11 for 
(J, t J  = (in, $). The coordinates of the stagnation point terminating the dividing 
streamline are (0, -0.0463). The ratio 6/d is equal to 1 exactly. 

The authors are grateful for a number of helpful comments from E. 0. Tuck. In 
particular, he suggested that the Froude number Fd corresponding to t d  = - 1 was not 
a lower bound, but that solutions with smaller Froude numbers were likely to exist. 
These solutions turned out to be the solutions with the dividing streamline terminating 
on the free surface and not on the bow. 
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